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Abstract 
 
 
Retrieving spatial distributions of cloud liquid water content from limited-angle emission data 

(passive microwave cloud tomography) is so ill-posed that even a small inaccuracy in the data 

and/or numerical treatments may result in a large error in the retrieval. Proper handling of the ill-

posedness is an ongoing challenge to the atmospheric remote sensing community. In this paper 

we first analyze the major regularization methods that each apply a single but different constraint 

to their retrievals, and extend these methods to allow for multiple constraints. We then develop a 

new iterative algorithm that can also incorporate complex physical constraints with great 

flexibility. To understand the influences of different constraints on the retrievals, we use the new 

iterative algorithm with various combinations of constraints to retrieve a stratocumulus cloud 

simulated with a large-eddy-simulation model. The standard least squares method with no 

constraints, as expected, performs very poorly, and yields a mean retrieval error of 0.77 g m–3, 

making this method nearly useless. Adding a non-negativity constraint reduces the mean 

retrieval error to 0.13 gm–3 but the internal structure of the cloud is still not reproduced in the 

retrieval. Adding a smoothness constraint dramatically improves the retrieved spatial structure of 

the cloud, and brings the mean error down to 0.093 gm–3, although the retrieved cloud top edges 

are still considerably blurred. Further adding the so-called double-side constraint (based on 

scaled adiabatic profiles) produces the best result; the retrieval faithfully reproduces the cloud 

water structure with a mean retrieval error of only 0.037 gm-3. 
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1. Introduction 

Knowledge of three-dimensional distributions of cloud water is vital for fundamental 

research in cloud physics and atmospheric radiation, for validation of cloud-resolving and large-

eddy-simulation models, and for applications like weather forecasting. In contrast to relatively 

expensive active remote sensing methods like radar, the microwave cloud tomography method is 

the only known passive method for remotely measuring spatial distributions of cloud water.  

The microwave cloud tomography involves measuring cloud microwave emission in a set 

of different directions (Figure 1) from a single airborne or multiple ground-based scanning 

microwave radiometers, then mathematically inverting the multi-angular emission data for the 

spatial distribution of the cloud liquid water content (LWC). The underlying relationship 

between the measured quantity and the cloud water distribution takes the form of the Fredholm 

integral equation of the first kind. Unlike conventional remote sensing methods, the multi-

angular measurements of cloud tomography are not independent; each slant ray may intersect 

many others and, wherever an intersection takes place, both rays depend on the LWC in the same 

intersected pixel (Figure 1). Thus the tomography retrieval problem requires solving a large 

system of linear or quasi-linear equations with hundreds to thousands of unknowns.  

 The cloud tomography method was first proposed by Warner et al. (1985), who 

demonstrated its feasibility using computer simulations based on two ground-based scanning 

radiometers. Warner et al. (1988) conducted a theoretical study of the retrieval accuracy of an 

airborne cloud tomography setup. Twomey (1987) developed an iterative inversion algorithm for 

reducing the computational cost of the tomography retrieval. Warner and Drake (1986) and 

Drake e al. (1988) reported on field demonstrations of ground-based and airborne cloud 

tomography. Since then, this subject has more or less lain dormant, leaving unanswered some 

important questions, for example, the mathematical nature of cloud tomography.  
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Huang et al. (2007) revisited the cloud tomography problem and showed that, like other 

limited angle tomography problems, the mathematical problem of the cloud tomography is so ill-

posed that its solution is non-unique, and very sensitive to measurement noises and numerical 

errors, especially when only a few (2-4) ground-based radiometers are used. These results 

suggest that the limited-angle radiometric data alone does not contain enough information to 

adequately determine the spatial LWC distribution.  For such an ill-posed inverse problem, 

additional constraints based on a priori knowledge can be used to find the solution. Huang et al. 

(2007) successfully incorporated a smoothness constraint in the tomography retrieval algorithm 

by means of the truncated singular value decomposition (TSVD) method. The addition of the 

smoothness constraint reduced the retrieval error of the cloud LWC by 80% compared to the 

unconstrained, standard least squares method. Despite the progress, some problems remain 

unresolved, for example, poor retrievals at cloud edges. In addition to the smoothness, one can 

also use other types of constraints, such as non-negativity of cloud LWC values, or prior 

estimates of the cloud LWC field from a physical model or other more direct measurements, to 

further improve the retrievals.  

Several regularization techniques have been developed to make use of different 

constraints to obtain better solutions for ill-posed inverse problems in various disciplines 

(Twomey, 1977; Rodgers, 2000). However, a single mathematical constraint (e.g., non-

negativity, smoothness, double-side constraint, or at best a combination of two of them) is 

usually used in these approaches; none of the existing approaches can seamlessly and flexibly 

combine several constraints together. Furthermore, the existing approaches lack the capability to 

include more sophisticated constraints such as those derived from a physical model. A 

comprehensive algorithm that is capable of using all of these constraints is desirable for cloud 

tomography. 
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In this paper, we first examine the major existing methods of regularization to discern 

their deficiencies. We then extend and integrate these different methods into a new iterative 

algorithm that can readily incorporate almost any types of constraints (both the aforementioned 

mathematical constraints and more sophisticated physical constraints), and overcomes the 

deficiencies of existing approaches. Finally, we use the new algorithm to demonstrate the role of 

each constraint in improving the retrieval of the LWC spatial distribution.  

 

2. Constrained retrieval algorithms 

Here we present the mathematical formulation of the tomographic problem and then 

briefly outline the existing constrained retrieval methods.  

 

2.1 Mathematical formulation of the tomographic problem 

Like many other remote sensing problems (Towmey 1977), the retrieval of the spatial 

LWC distribution can be formulated as the mathematical inversion of the Fredholm integral 

equation of the first kind: 

 

 

1

0
( , ) ( ) ( )a r x r dr b! = !"  

(1) 

 

where r, Ω, x,  b, and a denote spatial location,  direction,  cloud LWC,  measured or simulated 

microwave brightness temperatures, and kernel function, respectively.  

In the application of cloud tomography, the brightness temperature measurements are 

taken at a finite number of directions Ωi {i=1,...,m} and the LWC is retrieved at a finite number 

of locations (pixels) rj {j=1,...,n}. With this discretization, Eq. (1) reduces to the following 

matrix equation: 
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 bAx =  (2) 

 

where ),,,( 21 n

T
xxx !!x  is the vector of state variables to be retrieved (i.e., LWC); 

),,,( 21 m

T
bbb !!b is the vector of the measurements (i.e., microwave brightness temperatures); 

and )(
ij
a!A  is the kernel matrix. 

At first glance, Eq. (2) can be solved by use of the standard least squares method that 

seeks the solution by minimizing the following cost function: 

 

 ( ) ( ) 2

2
bAxbAxbAx !!=!"

T

J , (3) 

 

where 
2

•  denotes the 2-norm of a vector. It is readily shown that minimizing J, or setting ∂J/∂x 

= 0, leads to the least squares solution   

 

 ( ) bAAAx
TT

1!

= . (4)  

 

However, as shown in Huang et al. (2007), similar to many other remote sensing 

problems discussed in Twomey (1977), the inverse problem associated with cloud tomography is 

highly ill-posed, and small changes in the measurement vector b giving rise to large changes in 

the solution vector x. As a result, many solutions may satisfy Eq. (2) within a certain noise level. 

This problem of ill-posedness and solution ambiguity is further illustrated in Figure 2 by the 

ellipsoid S. In such a case, the solution selected by the least squares method is usually far from 

the true solution because the measurement noises and numerical errors are amplified by the small 
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eigenvalues of ATA. The ellipsoid S for the least squares confidence interval is therefore 

elongated along the directions of eigenvectors corresponding to the small eigenvalues.  

Huang et al. (2007) showed that improved tomographic retrieval can be obtained by 

discarding the small singular values of the matrix A through the use of the so-called TSVD 

method. Nevertheless, there are also other techniques of regularization that have been developed 

to solve the general ill-posed inverse problem .The following sub-sections discuss these 

techniques. 

 

2.2 Smoothness constraint 

Measurement noises and numerical errors tend to produce oscillations with large 

amplitudes in the solution of ill-posed problems, and thus a smooth solution is usually more 

preferable. The smoothness constraint is a soft constraint in that the solution is driven toward a 

more smooth distribution but still allows for some discontinuities. There are several ways to 

implement it. One is the TSVD that impose some smoothness on the solution by discarding some 

small singular values (Hansen, 1998; Huang et al., 2007).  

Another implementation of the smoothness constraint is the Philips-Twomey method 

(Twomey, 1977; Philips, 1962) known in the atmospheric sciences community or, the Tikhonov 

regularization in other disciplines (Tikhonov, 1963). In this paper, we use the Tikhonov 

regularization. Hansen (1998) proved that, under suitable conditions, the Tikhonov solution is 

very close to the TSVD solution. In this paper, we choose the Tikhonov regularization as the 

base method because of its ability to include other types of constraints. 

The idea of the Tikhonov regularization is to minimize the cost function:  

 

 2

2

2

2
LxbAx !+"#

S
J  (5) 
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where the second term on the right hand side controls the smoothness of the solution, and L is 

typically either the identity matrix, a diagonal matrix, or a discrete approximation of a derivative 

operator; λ is the regularization parameter determining the amount of the smoothness imposed on 

the retrievals.  In the rest of this paper, the matrix L is chosen to be the approximation of the 

two-dimensional first derivative operator. 

Solving ∂JS/∂x = 0 for x as before, the smoothness constrained least squares solution xS is 

given by: 

 ( ) bALLAAx
TTT

1

S

!

+= " . (6)  

 

In the Appendix A, we show that Tikhonov regularization is closely connected with the 

Bayesian theorem, and that the regularization parameter λ can be expressed as the ratio of the 

variance of the measurement errors to the variance of the state variable to be retrieved. However, 

in cloud tomography the variance of cloud LWC is usually unknown. We determine the 

regularization parameter λ using the L-curve method (Hansen, 1992) instead.  

 

2.3 Non-negativity constraint  

Both the unconstrained and the smoothness constrained least squares methods may lead 

to negative solutions, which are of course neither desirable for cloud tomography nor for many 

other remote sensing applications. Obtaining non-negative retrievals is especially important for 

seriously ill-posed problems because the unconstrained least squares method tends to produce 

oscillatory retrieval with frequent sign changes.  

The NNLS (Non-Negative Least Squares) algorithm introduced by Lawson and Hanson 

(1974) imposes a non-negativity constraint, a highly desirable property for LWC retrievals.  The 
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non-negativity constraint in nature is a hard constraint in that no negative solutions will be 

produced. NNLS was used in the early works on cloud tomography, e.g., Warner et al. (1985) 

and Warner et al. (1986). NNLS solves the basic matrix equation subject to the added constraint 

that the solution vector contains no negative elements: 

 

 
{ } 0  subject to  ,min

2

2
!" xbAx

x

.
 

(7) 

 

The algorithm starts with a set of possible basis vectors, computes the associated dual vector w, 

and selects the basis vector corresponding to the maximum value in w to swap out of the basis in 

exchange for another possible candidate, until the Kuhn-Tucker conditions are satisfied. 

Liu et al. (1999) developed an approach by combining the Tikhonov regularization with 

the NNLS in retrieval of the particle size distribution from measurements of multispectral optical 

depths, and dubbed this approach as smoothness-constrained NNLS (SCNNLS). Essentially, the 

SCNNLS requires solving the following minimization problem: 

 

 
{ } 0 subject to  ,min

2

2

2

2
!+" xLxbAx #

x  
 (8) 

 

Liu et al. (1999) demonstrated that the SCNNLS improves the retrieved particle size distributions, 

especially at the two ends of particle sizes where particle concentrations are low. 

 

2.4 Double-side constraint  

With a priori knowledge of the range of the solution, either from other more direct 

measurements or from theory, one can construct “double-side” constraints to bound the solution. 

Such a method was developed by Pierce and Rust (1985) and was successfully used by Babb et 
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al. (2000) to deconvolve atmospheric turbulence from Doppler velocity spectra and retrieve 

cloud drop size distributions. The double-side constraints (i.e., the bounding box B in an n-

dimensional space) are defined by a vector xb of the prior estimate (the center of the box) , and a 

matrix, 2/),,,(diag 21 n
qqq !!Q , where qi denotes the width of the bounding box in the i-th 

dimension (Figure 2a). By taking a convex combination of the solution ellipsoid S and the 

bounding ellipsoid B' (the envelope ellipsoid of the box B) one obtains a smaller solution 

ellipsoid P (Figure 2b) . The solution vector xDS with such a double-side constraint is then given 

by: 

 ( ) ( )
b

TT
xQbAQAAx
212

DS

!!! ++= ""  , (9) 

 

where τ is a weighting parameter determining how large a contribution from the prior estimate xb 

is applied in the combination. As shown in the Appendix B, under suitable assumptions the 

weighting parameter τ is actually the variance of the measurement error. In cloud tomography, 

the noise level of the microwave radiometers is usually well known; hence the result presented in 

the Appendices B and C provides a useful method to choose the weighting parameter τ.  

When the prior estimate is perfectly accurate, the bounding box shrinks to a point and we 

have Q→0 and Q-2→∞. Then, the constrained solution coincides with the prior estimate xb. On 

the other hand, if the prior estimate is very inaccurate, we have Q-2→0; thus the Q terms in Eq. 

(9) can be neglected and the constrained solution becomes the unconstrained least squares 

solution. Thus, when the size of the bounding box is too large, the prior information is not useful. 

In that case, additional constraints are needed to select reasonable solutions.  
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3. New algorithms for using combined constraints 

In this section, we first extend the aforementioned methods to make use of combined 

constraints. Then we integrate the extended methods into a new iterative algorithm which can 

also handle more sophisticated constraints such as those from a physical model. 

 

3.1 Double-side constrained SCNNLS (DSCNNLS) 

The methods described in Section 2 use only a single constraint (smoothness, non-

negativity, and double-side) or at best a combination of the smoothness and non-negativity 

constraints. Following the Bayesian theorem, we propose an algorithm that can use any 

combination of the smoothness, non-negativity, and double-side constraints. This section briefly 

introduces this new method and the detailed derivation is given in the Appendix C.  

Essentially, the DSCNNLS solves the following minimization problem: 

 

 { } 0 subject to  ,  min
2

2
!"#" xbxA

x

, (10)  

where 

2!
++"# QLLAAA $% TT , 

b

T
xQbAb
2!

+"# $ . 

The smoothness and double-side constraints can be disabled by setting the regularization 

parameter λ and the weighting parameter τ to zero, respectively, while the non-negativity 

constraint can be inactivated by using standard least-squares methods to solve Eq. (10) instead of 

the NNLS algorithm. 

Note that the dimensionality of A' is same as ATA, so the computational cost to invert A' 

is about same as that for ATA. The only additional cost of DSCNNLS compared to the standard 

method is the computation of the matrix A' itself, which is insignificant compared to the cost of 
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inverting A'. Therefore, the overall computational cost of including the combined constraints is 

on the same order as that of the standard least squares algorithm. 

 

3.2 A new iterative algorithm  

All the discussed non-iterative methods make use of constraints describing some 

important mathematical properties of the solutions, such as smoothness and non-negativity, in 

the form of equalities or inequalities. Nevertheless, more sophisticated constraints, such as those 

follow from the physical essence of the underlying problem, cannot be applied directly in the 

aforementioned non-iterative algorithms. For example, the hierarchical structure of clouds is a 

result of dynamic, thermodynamic, microphysical, and radiative processes of the atmosphere. 

The physical laws governing these processes are the basis of Cloud Resolving Models (CRM) 

and their use allows for the best simulations of the time evolution, structure, and life cycle of 

clouds and cloud systems that are currently possible (Tao, 2006). For the practice of cloud 

tomography, these physical laws ought to be useful to constrain the tomographic retrieval 

problem if they are used appropriately in the retrieval algorithm. For example, many clouds are 

initiated by adiabatic or pseudo-adiabatic convective processes and the cloud LWC rarely 

exceeds the adiabatic value as confirmed by numerous field experiments.  

 In order to make use of such sophisticated constraints, we develop an iterative algorithm 

through which sophisticated constraints can also be included with great flexibility. As depicted in 

Figure 3, the new retrieval machinery is able to incorporate the non-negativity, smoothness, and 

double-side constraints by means of the methods described in Section 2.5 (Box 1) in each single 

iteration, while the more sophisticated constraints are satisfied by adjusting the retrieval from the 

previous iteration (Box 2) to form a new estimate which is then used as a double-side constraint 
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for the next iteration. The iterations continue until the difference between the retrievals from two 

iterations is below a predetermined criterion.  

As illustrated in Figure 3, the iterative machinery contains two main steps: the first step is 

to compute the posterior estimate x based on the prior estimate xb and the measurements b by 

means of the constrained algorithm given by Eq. (10). Note that in the first iteration, the double-

side constraint is disabled by setting the weighting parameter τ to zero; the second step is to 

adjust the posterior estimate x so that the constraints in Box 2 are satisfied, and then use the 

modified x as the prior estimate xb for the next iteration. The machinery is terminated when the 

posterior estimate x meets some predetermined error tolerance ε. Expressed in equations this is, 

for the kth iteration, 

 [ ])( ,)( 1
kFk

b
xbx

!= , (11) 

 

 [ ])()1( kCk
b

xx =+ , (12) 

 

where F-1 is the inversion operator (Box 1 in Figure 3), and C is the constraint operator (Box 2 in 

Figure 3). 

 The algorithm is very flexible: it can include various combinations of constraints by 

setting the relevant weighting parameters in Eq. (10) to zero; it can also be run in a non-iterative 

manner by letting the error tolerance ε be infinity (so that the algorithm is always terminated 

after the first iteration) if a double-side constraint is not available. Therefore, this algorithm 

allows for a close examination of the usefulness of various constraints in cloud tomography. 
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4. Application to cloud tomography 

In this section, we use the new iterative algorithm to demonstrate the effects on the 

retrievals of different constraints by adding them one after another. We start with a description 

on how we simulate the needed tomographic data and how we invert the simulated data for the 

cloud LWC fields. Then we compare the retrievals obtained with different combination of 

constraints.   

 

4.1 Experiment setup 

The needed cloud tomography data are simulated by the Observation System Simulation 

Experiment described in Huang et al. (2007). Briefly, a radiative transfer model is used to 

simulate the measured brightness temperature given certain predefined radiometer specification. 

A two-dimensional 5 Km wide and 1.5 Km high slice of cloudy atmosphere is taken from 

the simulations of the DHARMA Large Eddy Simulation (LES) model driven by the data from 

the Atlantic Stratus Experiment (Ackerman et al., 1995). The original high-resolution LES 

simulation is degraded to an image of 20 by 20 pixels (250-meter horizontal and 75-meter 

vertical resolution) before simulating the radiometer measurements. Four simulated radiometers 

of 0.3 K noise level and 2-degree beam width are placed equally on the ground along a line of 10 

Km (Figure 1). Each radiometer scans the upper plane within 85o elevation of zenith at a 0.4o 

increment. This scanning strategy results in a total number of 800 rays hitting the 5 Km by 1.5 

Km area.  

The simulated tomographic data are then inverted using the iterative algorithm described 

in Section 3 with various combinations of constraints. Starting with the unconstrained algorithm 

in a non-iterative manner, we then add the non-negativity and smoothness constraints one at a 

time by means of Eqs. (6-8). Next, we use the adiabatic profile to derive a double-side constraint 
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(Box 2 in Figure 3) and switch the algorithm to an iterative manner. Specifically, the double-side 

constraint is specified by a prior estimate vector xb and a diagonal matrix Q (see Eq. (10)). The 

prior estimate vector xb, defining the center of the bounding box, is computed by adjusting the 

retrieval from the previous iteration according to a scaled adiabatic profile. The adjustment 

involves the following steps: (1) finding the cloud base and top based on the retrieval from the 

previous iteration; (2) calculating the liquid water path of each column; (3) computing the scale 

factor as the ratio of the liquid water path calculated in step (2) to that calculated from a pure 

adiabatic profile; and (4) adjusting the LWC values for each pixel in each column according to 

the scaled adiabatic profile so that the liquid water path  kept unchanged with the previous 

iteration. The diagonal matrix Q defines the width of the bounding box in each dimension. It is 

assumed to take the form of σI, where I is the identify matrix and σ is an adjustable parameter. In 

this work we let this parameter equal 0.1 gm-3, approximately the rms error of the non-negativity 

plus smoothness constrained retrieval.   

 

4.2. Retrieval results 

To illustrate the effects of different constraints on the retrieval, we discuss the results 

obtained by adding different constraints to the new iterative algorithm one after another. The 

“true” distribution of LWC for the selected stratocumulus cloud is shown in Figure 4 (“True”) as 

a reference. The cloud LWC field retrieved by the unconstrained least squares method shows 

large spatial variations (Figure 4, “Unconstrained”): large positive values are interlaced with 

negative values. But the integration of the LWC values along each radiometer scanning direction 

agrees very well with the microwave emission measurement along the same direction, which is 

not a surprising result because the unconstrained least squares method minimizes the squared 

residual error between the simulated and measured emission. Figure 5 shows the retrieval error 
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fields computed as the absolute difference between the true and the retrieved fields. The 

unconstrained method gives large errors everywhere (Figure 5, “Unconstrained”) and the 

averaged rms error is 0.78 gm-3 (Figure 6, “Unconstrained”), which further suggests that this 

method is almost useless in terms of obtaining the spatial LWC distribution.  

Adding the non-negativity constraint (the NNLS algorithm), the retrieval is greatly 

improved compared to its unconstrained counterpart. The negative values in the unconstrained 

retrieval are corrected as a direct result of the non-negativity constraint (Figure 4, “NN”), and the 

rms error is brought down to 0.23 gm-3 (Figure 6, “NN”). The location and spatial extent of the 

cloudy area are now roughly captured, although the spatial distribution of LWC within the cloud 

is still different significantly from the real one.  

The smoothness constrained retrieval (Tikhonov regularization) also captured the 

location and extent of the stratocumulus cloud (Figure 4, “S”). The spatial distribution of cloud 

LWC is more realistic than that obtained from the NNLS algorithm: the zeros inside the 

stratocumulus cloud are now corrected by the smoothness constraint, and the rms error of 0.098 

gm-3 is about a half of that of the NNLS. However, the top boundary of the cloud is still blurred 

and extends to a higher altitude than in the reference. Furthermore, some water-free areas below 

the cloud base are incorrectly labeled as patchy clouds with very low LWC values. 

Combining the non-negativity and smoothness constraints (the SCNNLS algorithm) leads 

to further improvement in the retrieval (Figure 4, “NN+S”). Adding the non-negativity constraint 

to the smoothness constrained method removes the spurious patchy clouds below the base of the 

stratocumulus cloud. The retrieval also roughly reproduces the increasing of the cloud LWC with 

altitude. Now, the value of the non-negativity constraint is better shown by comparing the error 

fields of “Unconstrained” with “NN constrained”, or “S constrained” with “S+NN constrained” 

(Figure 5). Note how the non-negativity constraint reduces the retrieval error below the cloud 
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base. In a similar manner, the values of the smoothness constraint can be assessed: comparing 

“Unconstrained” with “S constrained”, or “NN constrained” with “S+NN constrained” (Figure 5). 

The smoothness constraint significantly reduces the error inside the cloud. 

Figures 4 and 5 suggest that neither the non-negativity constraint and the smoothness 

constraint alone nor the combination of them can reproduce the sharp edges on the cloud top, 

which indicates that other information should be taken into account in order to obtain more 

realistic retrieval. Using the adiabatic profile (scaled by the liquid water path from previous 

iteration) as the double-side constraint improves on the retrieval around the cloud top boundary 

(Figure 4, “NN+S+DS”). The location and spatial extend of the cloud are very well reproduced 

in the retrieved field. The internal structure of the cloud LWC, which is not well resolved in the 

non-negativity and smoothness constrained retrieval, is now accurately captured. Furthermore, 

the iterative algorithm converges very fast (only 2-3 iterations are needed to meet an error 

threshold of 10-4 gm-3) possibly owing to the fact that the combined constraints greatly improve 

the kernel matrix and thus the retrieval problem becomes much less ill-posed. 

 Figure 6 further shows that the retrieval error decreases dramatically when the various 

constraints are added gradually in the retrieval algorithm. The unconstrained method cannot 

produce reasonable retrievals of cloud LWC (rms error 0.78 gm-3), as also illustrated in Huang et 

al. (2007). Adding the non-negativity and smoothness constraints reduces the retrieval errors to 

0.23 gm-3 and 0.098 gm-3, respectively. Combining the non-negativity and smoothness 

constraints further improves the retrieval to an rms error of 0.093 gm-3. The double-side 

constraint (based on scaled adiabatic profiles) appears to be superb in reproducing the cloud 

structure and it reduces the rms error to 0.037 gm-3. In summary, the combined use of the non-

negativity, smoothness, and double-side constraints greatly improves the cloud tomography 

retrievals. 
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5. Further examination of the constraints 

In order to theoretically examine the influences of the different constraints on the 

tomography retrieval, we compare the orthogonal decompositions of the matrices to be inverted, 

namely, AA
T  for the unconstrained least squares, LLAA

TT !+  for the smoothness constrained 

method, and 2!
++ QLLAA "# TT  for the smoothness plus double-side constrained method. 

Among the available orthogonal decompositions, we choose the SVD method because it is 

particularly useful to analyze the effect of perturbations on the solutions of the least squares 

problems (Hansen, 1998).  

The SVD of an n x n matrix K can be written as: 

 

 TVUÓK = . (13) 

 

Here U and V are orthogonal matrices whose columns are the input and output basis vector 

directions for K; ( )
n

!!! ,,,diag 21 !=Ó  is an diagonal matrix with the non-negative singular 

values ordered such that 0
21

!!!!
n

""" ! . Owing to the orthogonality of matrices  U and V, 

the inverse of matrix K can be easily written as: 

 

 TUVÓK 11 !!
= . (14)  

 

From Eq. (14), it is evident that if a singular value is very small, its reciprocal will be very large, 

and thus any measurement or rounding error will cause a large error in the retrieval. Therefore, 

by examining the singular values, it is possible to determine the degree of ill-posedness of the 

underlying problems. 
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Figure 7 shows the magnitude of the singular values as a function of their orders for the 

matrices AA
T , LLAA

TT !+ , and 2!
++ QLLAA "# TT , which respectively correspond to the 

unconstrained, smoothness constrained, and smoothness plus double-side constrained methods. 

For the unconstrained case, the singular values appear to drop 7 orders in magnitude with 

increasing index. The high order singular values (σi | 200 ≤ i ≤ 400) are extremely small, which 

indicates the unconstrained cloud tomography problem is very ill-posed. Hence, the large spatial 

variations and frequent sign changes in the retrieved image (Figure 4, “Unconstrained”) can be 

explained by these small singular values and the frequent sign changes in the elements of the 

singular vectors associated with such high order singular values (Huang et al., 2007). 

The smoothness constrained singular values show a relatively flat profile after i ≥ 150, 

while the unconstrained ones decrease in almost the entire range of i (Figure 7). Therefore, the 

singular values have a much smaller range than the unconstrained case. Nevertheless, the 

singular values for the smoothness constrained case decrease much faster after i ≥ 390 than 

between i = 150 and i = 390, which suggests that the smoothness constrain alone cannot fully 

resolve the ill-posed problem. This is confirmed in the retrieved image (Figure 3, “S constrained”) 

that despite a great reduction of the average rms error there are still some significant errors 

around the cloud boundary. 

Adding the double-side constraint, the behavior of the singular values is further improved 

( Figure 7). The singular values for i < 200 are almost the same as those of the smoothness 

constrained case. But for i ≥ 200 (especially for i ≥ 390), the singular values of the double-side 

plus smoothness constrained case decrease slower than those of the smoothness constrained case. 

As a result, the useful range of the singular values is further reduced. The resulting improvement 

on the retrieval is clearly shown in Figures 3 and 4 (“NN+S+DS constrained”).  
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6. Concluding remarks 

Previous studies have shown that regularization methods using appropriate constraints 

can reduce the retrieval ambiguity and obtain better retrieval for ill-posed problems. We first 

examine major existing regularization methods that use mathematical constraints such as non-

negativity, smoothness, and double-side and find that these methods are closely related to the 

Bayesian theorem under suitable assumptions. Then we extend these methods so that they can 

make use of multiple constraints but maintain the same level of computational cost. The 

extended methods are still unable to include sophisticated constraints such as those from a 

physical model. Thus, we integrate these extended methods into a new  iterative algorithm 

whereby both the mathematical constraints and more sophisticated physical constraints can be 

incorporated flexibly.  

 To demonstrate the usefulness of the constraints, the new iterative algorithm is used to 

invert simulated cloud tomography data from four ground-based microwave radiometers for a 

stratocumulus cloud. One by one, the smoothness, non-negativity, and double-side constraints 

are added into the retrieval algorithm. The retrieved cloud LWC field from the unconstrained 

method has many unrealistically high values interweaved with negative values and shows very 

poor performance in preserving the spatial patterns of the cloud LWC. The addition of the non-

negativity and smoothness constraints helps to capture the location and spatial extent of the cloud, 

but gives poor retrievals at cloud edges. The incorporation of a double-side constraint (based on 

scaled adiabatic profiles) produces the best cloud tomography retrieval. It not only accurately 

captures the location and extent of the stratocumulus cloud, but also accurately reproduces the 

cloud edges. Furthermore, the structures of the singular values of the corresponding kernel 

matrices are analyzed, revealing that the improvement of the retrieval arises from the reduced 

range of the singular values.  
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 The degree of the ill-posedness usually increases with the increasing dimensionality of 

the retrieval problem, as confirmed by numerous studies. In cloud tomography, the 

dimensionality of the retrieval problem is the number of unknowns in the system of equations (2), 

i.e., the number of pixels in the field to be retrieved. It was shown in Huang et al. (2007) that the 

ill-posedness of the tomographic retrieval problem is reduced when the total number of pixels is 

decreased (as a result of increased pixel size). However, with the increased pixel size fine-scale 

cloud structures tend to be lost. Therefore, reducing the dimensionality without losing fine-scale 

details would be highly desirable. This will be investigated in our future researches. 

As a final comment, the methods present in this study should be valuable not only for 

cloud tomography, but also for many other ill-posed remote sensing problems. The C source 

code of these algorithms is available upon request to the authors. 
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Appendix: Connection between the constrained algorithms and Bayesian theorem 

 

Bayesian theorem provides the general foundation for many inverse or forecast models. Let P(x), 

P(b) represent the corresponding Probability Density Functions (PDF) of the solution vector x 

and the measurement vector b, and P(x|b) represent the conditional PDF of x when b is assigned 

to a certain value, Bayesian theorem states the following equality: 

 

)(/)( )|()|( bxxbbx PPPP =       (A1) 

 

The last term is independent of the solution vector x and thus can be neglected when the cost 

function is constructed by means of maximizing the conditional probability P(x|b). 

 

A. Smoothness constrained algorithm (Tikhonov regularization) 

 

The Tikhonov regularization method is closely related to the Bayesian maximum 

likelihood analysis (Fitzpatric, 1991). Assuming the vectors x and b have Gaussian error 

distributions with constant error variances 2

Lx
!  and 2

b
! , we have: 
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The optimal solution is obtained by maximizing the conditional probability: 
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Let 22
/
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!!" # , the cost function then can be written as: 
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The cost function is now identical to that of the Tikhonov regularization (Eq. (5)), hence it is not 

surprising that the solution coincides with that of the Tikhonov regularization method. 

 

B. Double-side constrained algorithm 

 

In order to make the connection between the Bayesian theorem and the double-side 

constrained least squares, we assume that P(b|x) takes the Gaussian format as in Eq. (A3) and 

P(x) satisfies the following distribution: 
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where 
F

!  denotes the “entrywise” Frobenius norm; R is the error covariance matrix, it is 

diagonal if the error in x is independent with each other. From the Bayesian theorem, the 

conditional probability P(x|b) is: 
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The cost function can be written as: 
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Solving 0/ =!! xJ  and letting 2

b
!" #  we get: 
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The solution of the double-side constrained least squares (Eq. (9)) is a special case of the 

Bayesian solution xBay when R takes the form of a diagonal matrix. 

 

C. Smoothness plus double-side constrained algorithm 

 

Again, we assume that P(b|x) takes the Gaussian form as in Eq. (A3). With the smoothness and 

double-side constraints, P(x) satisfies the following distribution: 
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The solution is obtained by solving 0/ =!! xJ : 
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Figures 

 

 
 
Figure 1. An example of ground-based cloud tomography. The cloud is a two-dimensional 5 Km 
wide by 1.5 Km high slice taken from the DHARMA large eddy simulation model. Four 
scanning radiometers spaced 3.3 km apart with 0.3 K noise level are arranged in a line 10 km 
long. Each radiometer scans the upper plane to within 5o of the ground; the scans are every 0.4o 
in angle, giving a total of 800 rays hitting the cloudy area. The lengths of the scan lines from 
each radiometer are proportional to the simulated brightness temperatures in that direction. The 
atmospheric background is assumed to be 20 K.     
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(a) (b) 

  
 
Figure 2. Schematic illustration of applying a double-side constraint in a two-dimensional case. 
The S ellipsoid contains the ordinary least-squares solutions satisfying certain noisy 
measurements; it is elongated along the eigenvector corresponding to the smallest singular value 
of the kernel matrix. (a) The upper and lower bounds indicated by bounding box B (width q1, 
height q2, centered at xb=(xb1, xb2)) are used to constrain the solution ellipsoid S. Also shown is 
the envelope ellipsoid B' of the box B. (b) A new solution ellipsoid P (shaded) is formed by the 
convex combination of the ellipsoids S and B'. 
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Figure 3. Diagram of the iterative algorithm. The algorithm has two steps: (1) Compute the 
posterior estimate x based on the prior estimate xb and measurements b; (2) Adjust the posterior 
estimate x so that the constraints in Box 2 are satisfied, and use the modified x as the prior 
estimate xb for the next iteration. The iteration is terminated when the posterior estimate meets a 
Cauchy stop criterion involving the closeness of two successive iterates. 
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True field Unconstrained NN constrained 

 
   
S constrained NN+S constrained NN+S+DS constrained 

 
 

  Unit: gm-3 
 
LS: Least Squares; NN: Non-Negativity; S: Smoothness; DS: Double-side 
 
Figure 4. The retrieved LWC fields from the cloud tomography simulation shown in Figure 1 
using the unconstrained least squares, non-negativity constrained least squares (NNLS), 
smoothness constrained least squares (Tikhonov regularization), smoothness constrained NNLS 
(SCNNLS), and the iterative algorithm combining the non-negativity, smoothness, and double-
side constraints (DSCNNL). The true field, 5 Km wide and 1.5 Km high , is shown as a reference. 

Distance 

Height 
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   Unconstrained NN constrained 

 
   
S constrained NN+S constrained NN+S+DS constrained 

 
 

  Unit: gm-3 
 
LS: Least Squares; NN: Non-Negativity; S: Smoothness; DS: Double-side 
 
Figure 5. The retrieval error fields computed as the absolute difference between the true and 
retrieved LWC fields shown in Figure 4. The value of the non-negativity constraint can be shown 
by comparing the error fields of “unconstrained” with “NN constrained”, or “S constrained” with 
“S+NN constrained”. Note how the non-negativity constraint significantly reduces the retrieval 
error below the cloud bottom. The values of the smoothness and double-side constraints can be 
assessed in the same manner: the smoothness constraint significantly reduces the error inside the 
cloud while the double-side constraint greatly improves the retrievals around the cloud top edge. 
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NN: Non-Negativity; S: Smoothness; DS: Double-side 
 
Figure 6. The rms errors of the cloud LWC fields retrieved with different constraints (see Figure 
4) for a four-radiometer tomography simulation. The retrieval error decreases when more 
constraints are added.  The smoothness constraint is the most effective of the single constraints, 
but a better result is obtained by combining constraints. 
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Figure 7. Decreasing trend of the singular values for the unconstrained, smoothness constrained, 
and smoothness plus double-side constrained least squares for the cloud tomography retrieval 
problem shown in Figure 1. Retrieval errors owing to measurement and rounding errors become 
large when there are very small singular values. The constrained kernel matrices become better 
conditioned, leading to a more accurate solution, when the very small singular values are 
eliminated by applying constraints. 
 




